63 research outputs found

    Serum methylarginines and spirometry-measured lung function in older adults

    Get PDF
    Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans. Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures. Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study. The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity. Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function. Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function

    Identification of Potential Sites for Tryptophan Oxidation in Recombinant Antibodies Using tert-Butylhydroperoxide and Quantitative LC-MS

    Get PDF
    Amino acid oxidation is known to affect the structure, activity, and rate of degradation of proteins. Methionine oxidation is one of the several chemical degradation pathways for recombinant antibodies. In this study, we have identified for the first time a solvent accessible tryptophan residue (Trp-32) in the complementary-determining region (CDR) of a recombinant IgG1 antibody susceptible to oxidation under real-time storage and elevated temperature conditions. The degree of light chain Trp-32 oxidation was found to be higher than the oxidation level of the conserved heavy chain Met-429 and the heavy chain Met-107 of the recombinant IgG1 antibody HER2, which have already been identified as being solvent accessible and sensitive to chemical oxidation. In order to reduce the time for simultaneous identification and functional evaluation of potential methionine and tryptophan oxidation sites, a test system employing tert-butylhydroperoxide (TBHP) and quantitative LC-MS was developed. The optimized oxidizing conditions allowed us to specifically oxidize the solvent accessible methionine and tryptophan residues that displayed significant oxidation in the real-time stability and elevated temperature study. The achieved degree of tryptophan oxidation was adequate to identify the functional consequence of the tryptophan oxidation by binding studies. In summary, the here presented approach of employing TBHP as oxidizing reagent combined with quantitative LC-MS and binding studies greatly facilitates the efficient identification and functional evaluation of methionine and tryptophan oxidation sites in the CDR of recombinant antibodies

    From arginine methylation to ADMA: A novel mechanism with therapeutic potential in chronic lung diseases

    Get PDF
    Protein arginine methylation is a novel posttranslational modification regulating a diversity of cellular processes, including protein-protein interaction, signal transduction, or histone function. It has recently been shown to be dysregulated in chronic renal, vascular, and pulmonary diseases, and metabolic products originating from protein arginine methylation have been suggested to serve as biomarkers in cardiovascular and pulmonary diseases

    Novel Protocol for the Chemical Synthesis of Crustacean Hyperglycemic Hormone Analogues — An Efficient Experimental Tool for Studying Their Functions

    Get PDF
    The crustacean Hyperglycemic Hormone (cHH) is present in many decapods in different isoforms, whose specific biological functions are still poorly understood. Here we report on the first chemical synthesis of three distinct isoforms of the cHH of Astacus leptodactylus carried out by solid phase peptide synthesis coupled to native chemical ligation. The synthetic 72 amino acid long peptide amides, containing L- or D-Phe3 and (Glp1, D-Phe3) were tested for their biological activity by means of homologous in vivo bioassays. The hyperglycemic activity of the D-isoforms was significantly higher than that of the L-isoform, while the presence of the N-terminal Glp residue had no influence on the peptide activity. The results show that the presence of D-Phe3 modifies the cHH functionality, contributing to the diversification of the hormone pool

    Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome

    Get PDF
    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 µM; 95% CI 0.74–0.96) compared to those with MSM (0.54 µM; 95%CI 0.5–0.56) and HCs (0.64 µM; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; p = 0.01). ADMA was independently associated with decreased exhaled NO (rs = −0.31) and endothelial function (rs = −0.32) in all malaria patients, and with reduced exhaled NO (rs = −0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria

    Subcellular fractionation of TGF-&beta;1-stimulated lung epithelial cells: A novel proteomic approach for identifying signaling intermediates.

    No full text
    Members of the transforming growth factor (TGF)-beta superfamily are key regulators of lung development and homeostasis, in particular by controlling alveolar/bronchial epithelial cell function. TGF-beta signaling involves ligand-dependent activation of receptor serine/threonine kinases, activation and subsequent nuclear translocation of pathway-specific transcription factors (Smads), and ultimately, modulation of gene expression. While Smad-dependent responses represent the primary signaling components activated by TGF-beta receptors, their function is controlled by a variety of cofactors. In addition, alternative signaling systems mediating TGF-beta-induced effects have recently been described such as MAP kinase pathways. To uncover novel proteins that participate in TGF-beta signaling via nuclear/cytoplasmic shuttling in lung epithelial cells, we have analyzed A549 human lung epithelial cells, using subcellular fractionation combined with 2-D PAGE, tryptic digestion, and MS. We identified a rapid increase in the cytosolic localization of KH-type splicing regulatory protein (KHSRP), far upstream element-binding protein (FUBP1), hnRNP-L, and hnRNP-H1, concomitant with a decrease in their nuclear localization in response to TGF-beta 1. Proteomic data were confirmed by immunofluorescence and immunoblot analyses. In summary, we represent a powerful novel technology for the identification of previously unknown signaling intermediates
    corecore